Abstract

Head-up displays (HUDs) are used in aircraft to overlay relevant flight information on the vehicle's externals for pilots to view with continued focus on the far field. In these systems, the field of view (FOV) is traditionally limited by the size of the projection optics. Though classical HUD systems take a significant amount of space in the flight deck, they have become a necessity in avionic transportation. Our research aims to reduce the size of the HUD footprint while offering a wide FOV projected in the far field with an expanded pupil. This has been accomplished by coupling the image-bearing light into a waveguide under total internal reflection conditions, redirecting that light in the orthogonal direction, and then outcoupling the light toward the pilot. Each step was achieved using holographic optical elements. The injection hologram has optical power to obtain longitudinal magnification, whereas the redirection hologram expands the pupil in one dimension and the extraction hologram expands the pupil in a second dimension. Varying diffraction efficiency along the direction of the light propagation ensures even image intensity throughout the expanded pupil. We used ray tracing optical simulations to optimize the design of the system and present a fully operational demonstrator of the HUD. This HUD produces an image with a FOV of 24°×12.6° at a viewing distance of 4.5 in. (114 mm) from the waveguide, with infinite longitudinal magnification and 1.9× by 1.6× horizontal and vertical pupil expansion, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.