Abstract
Acoustic holographic lenses (AHLs) show great potential as a straightforward, inexpensive, and reliable method of sound manipulation. These lenses store the phase and amplitude profile of the desired wavefront when illuminated by a single acoustic source to reconstruct ultrasound pressure fields, induce localized heating, and achieve temporal and spatial thermal effects in acousto-thermal materials like polymers. The ultrasonic energy is transmitted and focused by AHL from a transducer into a particular focal volume. It is then converted to heat by internal friction in the polymer chains, causing the temperature of the polymer to rise at the focus locations while having little to no effect elsewhere. This one-of-a-kind capability is made possible by the development of AHLs to make use of the translation of attenuated pressure fields into programmable heat patterns. However, the impact of acousto-thermal dynamics on the generation of AHLs is largely unexplored. We use a machine learning-assisted single inverse problem approach for rapid and efficient AHLs’ design to generate thermal patterns. The process involves the conversion of thermal information into a holographic representation through the utilization of two latent functions: pressure phase and amplitude. Experimental verification is performed for pressure and thermal measurements. The volumetric acousto-thermal analyses of experimental samples are performed to offer a knowledge of the obtained pattern dynamics, as well as the applicability of holographic thermal mapping for precise volumetric temperature control. Finally, the proposed framework aims to provide a solid foundation for volumetric analysis of acousto-thermal patterns within thick samples and for assessing thermal changes with outer surface measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.