Abstract
The Rényi entropies as a generalization of the entanglement entropy imply much more information. We analytically calculate the Rényi entropies (with a spherical entangling surface) by means of a class of neutral hyperbolic black holes with scalar hair as a one-parameter generalization of the MTZ black hole. The zeroth-order and third-order phase transitions of black holes lead to discontinuity of the Rényi entropies and their second derivatives, respectively. From the Rényi entropies that are analytic at n = ∞, we can express the entanglement spectrum as an infinite sum in terms of the Bell polynomials. We show that the analytic treatment is in agreement with numerical calculations for the low-lying entanglement spectrum in a wide range of parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.