Abstract

We perform a holographic renormalization of cascading gauge theories. Specifically, we find the counterterms that need to be added to the gravitational action of the backgrounds dual to the cascading theory of Klebanov and Tseytlin, compactified on an arbitrary four-manifold, in order to obtain finite correlation functions (with a limited set of sources). We show that it is possible to truncate the action for deformations of this background to a five-dimensional system coupling together the metric and four scalar fields. Somewhat surprisingly, despite the fact that these theories involve an infinite number of high-energy degrees of freedom, we find finite answers for all one-point functions (including the conformal anomaly). We compute explicitly the renormalized stress tensor for the cascading gauge theories at high temperature and show how our finite answers are consistent with the infinite number of degrees of freedom. Finally, we discuss ambiguities appearing in the holographic renormalization we propose for the cascading gauge theories; our finite results for the one-point functions have some ambiguities in curved space (including the conformal anomaly) but not in flat space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.