Abstract
A variational formulation is given for a theory of gravity coupled to a massive vector in four dimensions, with Asymptotically Lifshitz boundary conditions on the fields. For theories with critical exponent z=2 we obtain a well-defined variational principle by explicitly constructing two actions with local boundary counterterms. As part of our analysis we obtain solutions of these theories on a neighborhood of spatial infinity, study the asymptotic symmetries, and consider different definitions of the boundary stress tensor and associated charges. A constraint on the boundary data for the fields figures prominently in one of our formulations, and in that case the only suitable definition of the boundary stress tensor is due to Hollands, Ishibashi, and Marolf. Their definition naturally emerges from our requirement of finiteness of the action under Hamilton-Jacobi variations of the fields. A second, more general variational principle also allows the Brown-York definition of a boundary stress tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.