Abstract

A systematic procedure for performing holographic renormalization, which makes use of the Hamilton–Jacobi method, is proposed and applied to a bulk theory of gravity interacting with a scalar field and a U(1) gauge field in the Stückelberg formalism. We describe how the power divergences are obtained as solutions of a set of “descent equations” stemming from the radial Hamiltonian constraint of the theory. In addition, we isolate the logarithmic divergences, which are closely related to anomalies. The method allows to determine also the exact one-point functions of the dual field theory. Using the other Hamiltonian constraints of the bulk theory, we derive the Ward identities for diffeomorphisms and gauge invariance. In particular, we demonstrate the breaking of U(1) R current conservation, recovering the holographic chiral anomaly recently discussed in hep-th/0112119 and hep-th/0202056.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.