Abstract
Motivated by AdS/CFT, we address the following outstanding question in large N conformal field theory: given the appearance of a single-trace operator in the mathcal{O}times mathcal{O} OPE of a scalar primary mathcal{O} , what is its total contribution to the vacuum four-point function leftlangle mathcal{OOOO}rightrangle as dictated by crossing symmetry? We solve this problem in 4d conformal field theories at leading order in 1/N. Viewed holographically, this provides a field theory reconstruction of crossing-symmetric, four-point exchange amplitudes in AdS5. Our solution takes the form of a resummation of the large spin solution to the crossing equations, supplemented by corrections at finite spin, required by crossing. The method can be applied to the exchange of operators of arbitrary twist τ and spin s, although it vastly simplifies for even-integer twist, where we give explicit results. The output is the set of OPE data for the exchange of all double-trace operators {left[mathcal{O}mathcal{O}right]}_{n,ell } . We find that the double-trace anomalous dimensions γn,ℓ are negative, monotonic and convex functions of ℓ, for all n and all ℓ > s. This constitutes a holographic signature of bulk causality and classical dynamics of even-spin fields. We also find that the “derivative relation” between double-trace anomalous dimensions and OPE coefficients does not hold in general, and derive the explicit form of the deviation in several cases. Finally, we study large n limits of γn,ℓ, relevant for the Regge and bulk-point regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.