Abstract

We examine the present state of holographic random access memory (HRAM) systems and address the primary challenges that face this technology, specifically size, speed, and cost. We show that a fast HRAM system can be implemented with a compact architecture by incorporating conjugate readout, a smart-pixel array, and a linear array of laser diodes. Preliminary experimental results support the feasibility of this architecture. Our analysis shows that in order for the HRAM to become competitive, the principal tasks will be to reduce spatial light modulator (SLM) and detector pixel sizes to 1 /spl mu/m, increase the output power of compact visible-wavelength lasers to several hundred milliwatts, and develop ways to raise the sensitivity of holographic media to the order of 1 cm/J.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.