Abstract

We report on the initial development of a visible initiator for thiol-ene photopolymerization using the 647 nm radiation from a Krypton ion laser. The photoinitiator system consists of the dye oxazine 170 perchlorate and the co-initiator benzoyl peroxide. Electron transfer occurs between the singlet excited state of the oxazine dye and benzoyl peroxide with subsequent decomposition of the peroxide yielding benzoyl oxy radicals capable of free radical initiation. We demonstrate that this photoinitiation system enables holographic patterning of HPDLC gratings as initial Bragg transmission gratings with a periodicity less than one micron using 647 nm radiation. These gratings were electrically switchable between a diffractive and transmissive state. Morphology studies using bright field transmission electron microscopy (BFTEM) indicate the phase separation of nearly spherical shaped nematic liquid crystal droplets of several hundred nanometers in diameter. This demonstration suggests that reflection gratings can be written using this photoinitiator system and 647 nm radiation which have switchable notch wavelengths approaching 2 microns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.