Abstract

An extension of the Gerchberg–Saxton algorithm from two dimensions to three is used to configure a continuous optical trap geometry. Intensity tailoring in a continuous, three-dimensional (3D) volume rather than in multiple discrete two-dimensional planes yields flexible 3D holographic optical tweezers. A numerical simulation and optical demonstrations of continuous 3D beam shaping and particle trapping confirm the capabilities of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.