Abstract

Two-exposure holographic interferometry was used to study the structure of current sheets formed in three-dimensional magnetic configurations with a singular X line in heavy noble gases (Ar, Kr, and Xe). It is found that, in the presence of a longitudinal magnetic field BZ directed along the X line, plasma sheets take on an unusual shape: they are titled and asymmetric. Their asymmetry becomes more pronounced as the mass of a plasma ion increases—a manifestation of the two-fluid properties of the plasma. The observed effects can be attributed to additional forces arising due to the interaction of the longitudinal magnetic field BZ with Hall currents excited in a plane perpendicular to the X line. A qualitative model describing plasma dynamics with allowance for the Hall effect and accounting for most of the experimentally observed effects is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.