Abstract

Many methods to measure corneal elasticity destroy the tissue and thereby produce erroneous results. Holographic interferometry, a highly precise nondestructive optical comparison technique, was used to evaluate corneal elasticity of intact eye-bank eyes. A double-pulse holographic interferometer operating at 632.8 nm was used to measure corneal deformation in 20 whole-globe eyes from donors 45 to 83 years of age for intraocular pressures from 16 mm Hg to 21 mm Hg. Stress was computed from LaPlace's law, and arc length strain was derived from z-axis distention of the central cornea. The stress-strain relationship in the normal physiological range of intraocular pressure was linear with a Young's elastic modulus of 1.03 gigapascals for the central cornea (r = 0.999). During interferometry of radial keratotomy of the cornea, interference fringe patterns developed in association with each incision as it was made. When four incisions were placed deep along each of the primary semimeridians, the fringe pattern developed as expected, based on current keratotomy models. When incisions were shallow (∼50% depth) and placed asymmetrically along the nasal, temporal, and superior semimeridians, the resulting surface strain was symmetrical about the central cornea, forming an annular pattern of interference fringes. These results indicate that when the cornea was stressed at physiological pressures as part of the intact whole globe, it was less elastic than excised corneal tissue tested by strip extensiometry. Radially incised corneas demonstrated strain patterns suggestive of inherent structural anisotropy with a possible inferior quadrant weakness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call