Abstract

Circular plates, under unknown clamping conditions and containing simulated defects in the form of circular localized thinning or thickening, are inspected by double-exposure holography. With an incremental uniform pressure applied between exposures, eccentric defects are readily revealed from the distinct irregular fringe patterns. In the case of central circular defects, however, the absence of distinct irregular fringe patterns does not enable easy visual detection of the defects. The simple method of analysis described in this paper, based on the fact that the displacement in a defective plate differs from that in a defect-free plate, allows easy deduction of central and eccentric defects from the fringe patterns. Furthermore, this method enables identification of the type of defect (localized thinning or thickening), the extent of thickness variation, as well as an accurate estimation of the location and size of the defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.