Abstract

Recent progress in the holographic approach makes it more transparent that each conductivity can be decomposed into the coherent contribution due to momentum relaxation and the incoherent contribution due to intrinsic current relaxation. In this paper we investigate this decomposition in the framework of Einstein-Maxwell-dilaton theory. We derive the perturbation equations, which are decoupled for a large class of background solutions, and then obtain the analytic results of conductivity with the slow momentum relaxation in low frequency approximation, which is consistent with the known results from memory matrix techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.