Abstract
We present a gravity dual to a quantum material with tilted Dirac cone in 2+1 dimensional spacetime. In this many-body system the electronics degrees of freedom are strongly-coupled, constitute a Dirac fluid and admit an effective hydrodynamic description. The holographic techniques are applied to compute the thermodynamic variables and hydrodynamic transports of a fluid on the boundary of an asymptotically anti de Sitter spacetime with a boosted black hole in the bulk. We find that these materials exhibit deviations from the normal Dirac fluid which rely on the tilt of the Dirac cone. In particular, the shear viscosity to entropy density ratio is reduced and the KSS bound is violated in this system. This prediction can be experimentally verified in two-dimensional quantum materials (e.g. organic α-(BEDT-TTF)2I3 and 8Pmmn borophene) with tilted Dirac cone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.