Abstract

We investigate the behaviors of the scalar operator and holographic entanglement entropy in the metal/superconductor phase transition with Power-Maxwell electrodynamics in a higher dimensional background away from the probe limit. We observe that the larger parameters b and q make the condensation of the scalar operator more difficult, and the critical temperature decreases more slowly as the factors increase. In the belt geometry, the value of the entanglement entropy in the metal and superconductor phases is not only related to the the strength of the Power-Maxwell field but also to the width of the strip geometry. At the phase transition point, the discontinuous slope of entanglement entropy is universal for different model factors. It turns out that holographic entanglement entropy is a powerful tool to probe the properties of the phase transition in this holographic superconductor model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.