Abstract

We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.