Abstract

The holographic entanglement entropy for the most general higher derivative gravity is investigated. We find a new type of Wald entropy, which appears on entangling surface without the rotational symmetry and reduces to usual Wald entropy on Killing horizon. Furthermore, we obtain a formal formula of HEE for the most general higher derivative gravity and work it out exactly for some squashed cones. As an important application, we derive HEE for gravitational action with one derivative of the curvature when the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic curvature. We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that such mismatch comes from the `anomaly of entropy' of the derivative of curvature. After considering such contributions carefully, we resolve the puzzle successfully. In general, we need to fix the splitting problem for the conical metrics in order to derive the holographic entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can be fixed by using equations of motion. How to derive the splittings for higher derivative gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem in this paper and find that it does not affect our main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.