Abstract

We discuss the use of holographic photopolymer materials for use as dense wavelength division multiplexing filters in the C-band of the optical communication spectrum. An edge-illuminated hologram configuration is described that effectively extends the grating length to achieve narrow band filters operating near 1550 nm in photopolymers that are 100-200-microm thick. This configuration enables the formation of apodized and cascaded filter systems. Rouard's method is used to examine the properties of both apodization and cascaded gratings and indicates the potential for narrow spectral bandwidths (< 0.2 nm) and high side-lobe suppression (<-- 30 dB). Initial experimental results with a commercially available photopolymer are provided that verify narrowband spectral-transmittance properties (< 0.6 nm) and the ability to apodize the index profile. The primary limitation of the design is the absorption of existing photopolymer materials. Optimizing the polymer chemistry for filter design at 1550 nm may solve this problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.