Abstract

We determined the local adsorption structure of disordered oxygen on the Ni(111) surface by means of diffuse holographic LEED. The measurements have been performed above the critical temperature (Tc=450 K) for the oxygen order–disorder phase transition at 500 K and at a coverage of Θ=0.25 ML. At this temperature we found, in agreement with a previous LEED-IV-analysis [Surf. Sci. 349 (1996) 185], that besides the fcc threefold sites also hcp sites are occupied. In addition, a small amount seems to be located also at top and bridge sites. Reconstructing the holographic wavefield information, the different oxygen adsorption geometries are superimposed in the real space image. Nevertheless, a spatial resolution of 0.5–1 Å was sufficient to clearly distinguish between them. The influence of algorithmic parameters on the image quality was tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.