Abstract

The shape and size of the dielectric columns or particles (“atoms”) of photonic crystals (PhCs) formed by holographic lithography are determined by the isointensity surfaces of the interference field; consequently the PhCs’ photonic band gap (PBG) properties are closely related to their fabrication design. Here we have proposed a new structure of two-dimensional (2-D) hexagonal lattice with irregular columns, which can yield a 2-D complete relative band gap of 24.0% in case of the dielectric columns of ε = 13.6 in air, about 27% increase compared with that of the same lattice with regular triangular columns. This band gap size is among the largest for all the possible 2-D PhCs reported until now. The relationship between band gap properties of resultant structure and the specific fabrication conditions such as structure design and the choice of optimum intensity threshold and filling ratio are systematically discussed. The optical design for making this structure by two exposures is explained. This work may demonstrate the unique feature and advantages of photonic crystals made by holographic method and provide a guideline for their design and experimental fabrication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.