Abstract

Two minimally interacting fluids; dark matter and holographic dark energy components has been studied in a spatially homogeneous and anisotropic Bianchi type-I space-time. The solutions of the Einstein’s field equations are obtained under the assumption of time varying deceleration parameter (Abdussattar and S. Prajapati, Astrophys. Space Sci. 331, 65, 2011) which represents transition of the universe from the early decelerating phase to the recent accelerating phase. It is shown that for large expansion the model reduces to model while for suitable choice of interaction between dark matter and holographic dark energy the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increase in time. Allowing for time dependent deceleration parameter the solutions of the field equations and some physical and geometric properties of the model along with physical acceptability of the solutions have also been discussed in details.Â

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.