Abstract

The observed acceleration of the present universe is shown to be well explained by the holographic dark energy characterized by the total comoving horizon of the universe ($\eta$HDE). It is of interest to notice that the very large primordial part of the comoving horizon generated by the inflation of early universe makes the $\eta$HDE behave like a cosmological constant. As a consequence, both the fine-tuning problem and the coincidence problem can reasonably be understood with the inflationary universe and holographical principle. We present a systematic analysis and obtain a consistent cosmological constraint on the $\eta$HDE model based on the recent cosmological observations. It is found that the $\eta$HDE model gives the best-fit result $\Omega_{m0}=0.270$ ($\Omega_{de0}=0.730$) and the minimal $\chi^2_{min}=542.915$ which is compatible with $\chi^2_{\Lambda {\rm CDM}}=542.919$ for the $\Lambda$CDM model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.