Abstract

I describe the first investigation of the holographic complexity conjectures for rotating black holes. Exploiting a simplification that occurs for equal-spinning odd dimensional black holes, I demonstrate a relationship between the complexity of formation and the thermodynamic volume associated with the black hole. This result suggests that it is thermodynamic volume and not entropy that governs the complexity of formation in both the Complexity Equals Volume and Complexity Equals Action proposals. This proposal reduces to known results involving the entropy in settings where the thermodynamic volume and entropy are not independent, but has much broader scope. Assuming the validity of a conjectured inequality for thermodynamic volume, this result suggests the complexity of formation is bounded from below by the entropy for large black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.