Abstract

We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conductivity is approximately proportional to the product of the axial and vector chemical potentials for arbitrary magnitudes of the chemical potentials. We also evaluate the axial alternating current (AC) conductivity induced by a frequency-dependent electric field, where the oscillatory behavior with respect to the frequency is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call