Abstract
We review recent applications of the dual holographic approach to describing the quark–gluon plasma observed in high-energy collisions of relativistic heavy nuclei. Holography and AdS/CFT duality provide a means to study the properties of strong-coupling quantum field theories using higher-dimensional gravity theories. The appearance of quark–gluon plasma in heavy ion collisions can be described in dual terms as the formation of a black hole. To illustrate the major achievements of holographic theory, we discuss the calculation of the following quantities: the shear viscosity and other transport coefficients (all calculated by second order hydrodynamic models), the energy dependence of multiplicities, and the anisotropic thermalization and isotropization times. We also compare theoretical predictions with available experimental data, including the recent LHC results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.