Abstract
Hokkaido is classified into five regions based on climatic features: the Japan Sea coast, the Pacific coast, the Okhotsk Sea coast, the inland region, and southwest Hokkaido. Holocene vegetation and climate changes at twelve sites selected from these regions are reviewed and compared. On the Japan Sea coast, Picea and Quercus pollen fluctuated at millennial scale, matching with pulses of the Tsushima Current revealed from diatom-based temperature reconstructions in the Japan Sea. A marine core obtained from off the Pacific coast revealed a maritime climate through increasing Betula pollen percentages during the last deglaciation and early Holocene. In summer, dense sea fog resulting from the Oyashio Cold Current and Ogasawara High caused a maritime climate on the Pacific coast. Pollen percentages of Betula ermanii, which is well adapted to the maritime climate in Northeast Asia, increased during this period. Vegetation changes on the Okhotsk Sea coast and in inland regions were similar, indicating similar climatic changes. In these regions, Quercus forests have been distributed steadily since 8000 BP under a warm and moist climate, except for the northern coast, at the Sea of Okhotsk, where Picea and Abies increased slightly since 2000 BP. In southwest Hokkaido, Quercus began to increase 1000 years earlier than in other regions. Fagus crenata migrated from Honshu Island to southernmost Hokkaido around 6000 BP and reached the current northern limit around 1000 BP. The period during which Quercus pollen percentages increased is recognized in almost all regions at around 8000–9000 BP. However, local factors, such as river flooding and local strong winds, also influenced the vegetation changes. Comparison of the vegetation changes in three neighboring regions of Northeast Asia indicate abrupt warming at around 8000–9000 BP and cooling at 2500 BP common to all regions, suggesting global climatic changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.