Abstract

In actively deforming regions fluvial systems are strongly regulated by uplift. River geometries record histories of vertical motions that can be used to examine the driving forces generating topographic relief. Iceland's rapidly evolving landscapes provide an opportunity to disentangle histories of uplift generated by postglacial rebound, volcanism, dynamic support, and plate spreading. Broad knickzones observed along Iceland's large rivers, and its powerful waterfalls and deep canyons, hint that regional processes have generated significant relief. We combine high-resolution drone photogrammetry and cosmogenic 3He dating of fluvial terraces to measure the erosional history of one of Iceland's largest knickzones, Jökulsárglúfur, in the northeast part of the island. Progressive younging of terraces indicates knickpoint propagation rates of up to ∼70 cma−1 during the last 8 ka. Knickpoint velocities appear to be controlled partly by toppling of basalt columns. These rates were used to calibrate a model that inverts Iceland's drainage networks for uplift rate histories. Calculated uplift and isostatic calculations indicate that rifting, sub-plate support, and isostatic adjustment resulted in tens to hundreds of meters of regional Holocene uplift. Our results suggest regional uplift and fluvial erosion can rapidly generate hundreds of meters of relief in post-glacial landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call