Abstract
AbstractGeomorphic field and aerial lidar mapping, coupled with fault-parallel trenching, reveals four progressive offsets of a stream channel and an older offset of the channel headwaters and associated fill terrace–bedrock contact at Hossack Station along the Conway segment of the Hope fault, the fastest-slipping fault within the Marlborough fault system in northern South Island, New Zealand. Radiocarbon and luminescence dating of aggradational surface deposition and channel initiation and abandonment event horizons yields not only an average dextral rate of ∼15 mm/yr since ca. 14 ka, but also incremental slip rates for five different time periods (spanning hundreds to thousands of years) during Holocene to latest Pleistocene time. These incremental rates vary through time and are, from youngest to oldest: 8.2 +2.7/−1.5 mm/yr averaged since 1.1 ka; 32.7 +∼124.9/−10.1 mm/yr averaged over 1.61–1.0 ka; 19.1 ± 0.8 mm/yr between 5.4 and 1.6 ka; 12.0 ± 0.9 mm/yr between 9.4 and 5.4 ka, and 13.7 +4.0/−3.4 mm/yr from 13.8 to 9.4 ka, with generally faster rates in the mid- to late Holocene relative to slower rates prior to ca. 5.4 ka. The most pronounced variation in rates occurs between the two youngest intervals, which are averaged over shorter time spans (≤1700 yr) than the three older incremental rates (3700–4500 yr). This suggests that the factor of ∼1.5× variations in Hope fault slip rate observed in the three older, longer-duration incremental rates may mask even greater temporal variations in rate over shorter time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.