Abstract

New stratigraphic data collected from six sites in the Humber estuary establish a record of Holocene relative sea-level (RSL) change, and enable testing of four possible causes of rapid coastal change: sea-level rise, changes in sedimentation, storm-surge history, and human impact. Mean high water of spring tides (MHWST) in the Humber rose from c. 9 m OD at 7500 cal. yrs BP to 0 m OD by 4000 cal. yrs BP, at an average long-term rate of c. 3.9 mm yr-1. After this, the rate of rise gradually decreased to c. 1 mm yr’. Discrete episodes of rapid RSL rise are not identified although their absence may reflect limited data availability. However, we do observe two episodes of rapid coastal change in the Humber estuary. The first occurs between c. 3200 and 1900 cal. yrs BP, as marine conditions expand to their Holocene maximum and then contract. This pattern of coastal development differs from that in the East Anglian Fenlands, suggesting local processes control sedimentation at one or both of these sites. The second period of rapid change relates to a well-documented episode of increased storm surge activity in the Humber estuary and elsewhere in the UK and the North Sea region between c. 700 and 500 cal. yrs BP. Coastal development during this period varies considerably with erosion, accretion and flooding in different parts of the estuary system. Finally, we examine evidence for accelerated sediment delivery to the Humber estuary due to woodland clearance and prehistoric agriculture from 5700 cal. yrs BP onwards. Maximum sediment input is likely at c. 3200 to 1900 cal. yrs BP; a period which tentatively correlates with an episode of estuary infilling and shoreline advance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.