Abstract

The northeast coast of Sicily shows emergent marine features that have been uplifting during the Holocene along the footwalls of two major regional fault systems, the Malta Escarpment and Messina fault system. Previously, uplift rates were interpreted as up to about 1.8 mm/mm a −1. New dates on shelly remains, collected close to sea-level, from the Taormina area north of Mount Etna, and amended sea-level curves, are used to show that uplift over the past 6000 years has been proceeding at a slower rate of about 1.4 mm a −1. However, over a longer time period, from the Tyrrhenian Oxygen Isotope Stage 5.5 (about 125 ka) to the present day, the uplift rate has been yet slower, at about 1 mm a −1. Northeast Sicily lies in a complex plate boundary region whereas, in contrast, the rest of Sicily appears to have been stable throughout the later Quaternary. Further comparisons show that the French Mediterranean coast [Lambeck, Bard (2000) Earth Planet. Sci. Lett., 175, 202–222] is a region of crustal stability, where movement is dominated by subsidence of the outer portion of the proglacial forebulge of the last glaciation. There the coastline has been progressively submerged during the Holocene, and sea level has never been higher than at present. Northeastern Sicily uplift is therefore more likely controlled by plate processes that mask most of the effects of glacio-hydro-isostatic adjustment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.