Abstract

Peat and net carbon accumulation rates in two sub‐arctic peat plateaus of west‐central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600–5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long‐term peat and net carbon accumulation rates for both profiles are 0.30–0.31 mm/yr and 12.5–12.7 gC/m2yr, respectively. These values reflect very slow peat accumulation (0.04–0.09 mm/yr) and net carbon accumulation (3.7–5.2 gC/m2yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call