Abstract

Holocene sediments from Nelson Lake, on Michigan's eastern Upper Peninsula, provide isotopic, pollen, and charcoal evidence for a two-step sequence of changes in moisture source and increased lake-effect precipitation during the late Holocene. Between 8000 and 5300 cal yr B.P., a warm, dry climate and zonal atmospheric circulation produced enriched stable oxygen and carbon isotopic values in combination with high percentages of pine pollen and sustained influx of charcoal particles. After 5300 cal yr B.P., decreasing isotopic values in marl and increasing pollen percentages of mesic hardwoods and northern white cedar indicate increased meridional air flow and precipitation from cold winter storms generated in Alberta, Canada. After 3000 cal yr B.P., abrupt declines in values of δ13C and δ18O and increased pollen representation of hemlock, American beech, spruce, and aquatic plants indicate paludification from increased lake-effect snowfall. The moisture was derived from the Great Lakes and transported by Alberta cyclonic storms that were steered across Lakes Superior and Michigan by a southward shift in the modal winter position of the polar jet stream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call