Abstract

The present study applied stable carbon isotopes, C/N ratios, and sedimentological indicators to reconstruct environmental changes during Holocene and to test the hypothesis that $$\updelta ^{13}\hbox {C}$$ and C/N ratios are accurate proxies of sea level change in the Red River delta (RRD), Vietnam. A 36 m long sediment core was mechanically drilled in the wave-dominated region of the RRD. The covariation of lithological characteristics, sediment grain-size distribution and geochemical proxies (LOI, TOC, C/N, $$\updelta ^{13}\hbox {C}$$ ) suggested that the sediment core could be divided into six depositional environments, consisting of sub- and inter-tidal flats (formed before 8860 cal. year BP), shelf-prodelta, delta front slope (formed from 8860 to 2290 cal. year BP), delta front platform, tidal flat, and flood plain (from 2290 to 0 cal. year BP). Covariation of $$\updelta ^{13}\hbox {C}$$ and C/N ratios in the sediment core allowed for tracing the origin of sedimentary organic carbon, which shifted from the dominance of mangroves and C3 plants at the sub- and inter-tidal flats to marine phytoplankton at the shelf-prodelta and delta front slope. The sedimentary sources of the delta front platform, tidal flat and flood plain were a mixture of phytoplankton and C3 plants, with the later source being dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.