Abstract

Assumptions about the fate of low-lying coral reef islands (atolls) facing global warming are poorly constrained, due to insufficient information on their depositional history. Based on the U/Th dating of 48 coral clasts, the chronostratigraphic analysis of excavated sections through rim islets (motu) at the windward and leeward sides of Fakarava Atoll (Tuamotu, French Polynesia) reveal that the deposition of coral detritus started approximately 2000 years ago. Most of these deposits lie on conglomerate pavements or reef flat surfaces, and are about 4500 to 3000 years old. The islet expansion at the windward sites seems to have operated coevally across the reef rim, from the ocean-facing shore lagoonwards. Meanwhile, well-developed, continuous, elongated, vegetated islets mostly occur along the windward, northeast to southeast coast, and isolated islets, vegetated or not, associated with the dense networks of conglomerates, are common on the leeward, partly submerged, western rim. Islet accretion on the windward rim sides is believed to have been mainly triggered by winter storms and occasional cyclonic events, whilst the leeward atoll parts were most likely shaped by distant-source swells from mid to high latitudes. The projections of the accelerated sea level rise in the future suggest that the long-term islet stability at Fakarava could be altered because the islets have accreted under the conditions of the falling sea level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call