Abstract

In the northeastern St. Elias Mountains in southern Yukon Territory and Alaska, C 14-dated fluctuations of 14 glacier termini show two major intervals of Holocene glacier expansion, the older dating from 3300-2400 calendar yr BP and the younger corresponding to the Little Ice Age of the last several centuries. Both were about equivalent in magnitude. In addition, a less-extensive and short-lived advance occurred about 1250-1050 calendar yr BP (A.D. 700–900). Conversely, glacier recession, commonly accompanied by rise in altitude of spruce tree line, occurred 5975–6175, 4030-3300, 2400-1250, and 1050-460 calendar yr BP, and from A.D. 1920 to the present. Examination of worldwide Holocene glacier fluctuations reinforces this scheme and points to a third major interval of glacier advances about 5800-4900 calendar yrs BP; this interval generally was less intense than the two younger major intervals. Finally, detailed mapping and dating of Holocene moraines fronting 40 glaciers in the Kebnekaise and Sarek Mountains in Swedish Lapland reveals again that the Holocene was punctuated by repeated intervals of glacier expansion that correspond to those found in the St. Elias Mountains and elsewhere. The two youngest intervals, which occurred during the Little Ice Age and again about 2300–3000 calendar yrs BP, were approximately equal in intensity. Advances of the two older intervals, which occurred approximately 5000 and 8000 calendar yr BP, were generally less extensive. Minor glacier fluctuations were superimposed on all four broad expansion intervals; those of the Little Ice Age culminated about A.D. 1500–1640, 1710, 1780, 1850, 1890, and 1916. In the mountains of Swedish Lapland, Holocene mean summer temperature rarely, if ever, was lower than 1°C below the 1931–1960 summer mean and varied by less than 3.5°C over the last two broad intervals of Holocene glacial expansion and contraction. Viewed as a whole, therefore, the Holocene experienced alternating intervals of glacier expansion and contraction that probably were superimposed on the broad climatic trends recognized in pollen profiles and deep-sea cores. Expansion intervals lasted up to 900 yr and contraction intervals up to 1750 yr. Dates of glacial maxima indicate that the major Holocene intervals of expansion peaked at about 200–330, 2800, and 5300 calendar yr BP, suggesting a recurrence of major glacier activity about each 2500 yr. If projected further into the past, this Holocene pattern predicts that alternating glacier expansion-contraction intervals should have been superimposed on the Late-Wisconsin glaciation, with glacier readvances peaking about 7800, 10,300, 12,800, and 15,300 calendar yr BP. These major readvances should have been separated by intervals of general recession, some of which might have been punctuated by short-lived advances. Furthermore, the time scales of Holocene events and their Late-Wisconsin analogues should be comparable. Considering possible errors in C 14 dating, this extended Holocene scheme agrees reasonably well with the chronology and magnitude of such Late-Wisconsin events as the Cochrane-Cockburn readvance (8000–8200 C 14 yr BP), the Pre-Boreal interstadial, the Fennoscandian readvances during the Younger Dryas stadial (10,850-10,050 varve yr BP), the Alleröd interstadial (11,800-10,900 C 14 yr BP), the Port Huron readvance (12,700–13,000 C 14 yr BP), the Cary/Port Huron interstadial (centered about 13,300 C 14 yr BP), and the Cary stadial (14,000–15,000 C 14 yr BP). Moreover, comparison of presumed analogues such as the Little Ice Age and the Younger Dryas, or the Alleröd and the Roman Empire-Middle Ages warm interval, show marked similarities. These results suggest that a recurring pattern of minor climatic variations, with a dominant overprint of cold intervals peaking about each 2500 yr, was superimposed on long-term Holocene and Late-Wisconsin climatic trends. Should this pattern continue to repeat itself, the Little Ice Age will be succeeded within the next few centuries by a long interval of milder climates similar to those of the Roman Empire and Middle Ages. Short-term atmospheric C 14 variations measured from tree rings correlate closely with Holocene glacier and tree-line fluctuations during the last 7000 yr. Such a correspondence, firstly, suggests that the record of short-term C 14 variations may be an empirical indicator of paleoclimates and, secondly, points to a possible cause of Holocene climatic variations. The most prominent explanation of short-term C 14 variations involves modulation of the galactic cosmic-ray flux by varying solar corpuscular activity. If this explanation proves valid and if the solar constant can be shown to vary with corpuscular output, it would suggest that Holocene glacier and climatic fluctuations, because of their close correlation with short-term C 14 variations, were caused by varying solar activity. By extension, this would imply a similar cause for Late-Wisconsin climatic fluctuations such as the Alleröd and Younger Dryas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call