Abstract

The Dinggye area (Southern Tibet) contains numerous aeolian sediments, including modern and ancient aeolian sand deposition. In this study, we determined the chronological sequences of several profiles of Holocene paleo-aeolian deposits using Optically Stimulate Luminescence (OSL) and radiocarbon (Accelerator Mass Spectrometry (AMS) C-14 and conventional C-14) dating. Using the grain size, magnetic susceptibility, organic content and chrome characteristics of the deposits, we reconstructed the Holocene aeolian processes in the Dinggye area. The results from the paleo-aeolian depositional record indicate multiple changes in the intensity of aeolian activity and soil fixing with alternations between cool-dry and warm-humid climate conditions in the Dinggye area during the Holocene. From 12.8 ka B.P. to the present, the climate has fluctuated frequently. From 12.8 to 11.6 ka B.P. and from 9.3 to 4.9 ka B.P., the climate was warm and humid with weak aeolian activity, and a sandy paleosol developed. The peak Holocene megathermal period and the main period of pedogenesis in the study area was from 6.6 to 4.9 ka B.P. Between 11.6 and 9.3 ka B.P. and since 2.0 ka B.P., the sandlot expanded due to a cool, dry and windy climate; aeolian activity was strong and caused the development of moving dunes. The period between 4.9 and 2.0 ka B.P. was relatively cool and dry with slightly strengthened aeolian activity that developed stationary and semi-stationary dunes. In general, the Holocene events recorded by the paleo-aeolian deposits correspond well with those interpreted by other methods, such as records from ice-cores, lacustrine deposits and tree rings, but there are minor discrepancies between the methods. (C) 2013 Elsevier B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.