Abstract

Biotin is a water-soluble vitamin required by all organisms, but only synthesized by plants and some bacterial and fungal species. As a cofactor, biotin is responsible for carbon dioxide transfer in all biotin-dependent carboxylases, including acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, and pyruvate carboxylase. Adding biotin to carboxylases is catalyzed by the enzyme holocarboxylase synthetase (HCS). Biotin is also involved in gene regulation, and there is some indication that histones can be biotinylated in humans. Histone proteins and most histone modifications are highly conserved among eukaryotes. HCS1 is the only functional biotin ligase in Arabidopsis and has a high homology with human HCS. Therefore, we hypothesized that HCS1 also biotinylates histone proteins in Arabidopsis. A comparison of the catalytic domain of HCS proteins was performed among eukaryotes, prokaryotes, and archaea, and this domain is highly conserved across the selected organisms. Biotinylated histones could not be identified in vivo by using avidin precipitation or two-dimensional gel analysis. However, HCS1 physically interacts with Arabidopsis histone H3 in vitro, indicating the possibility of the role of this enzyme in the regulation of gene expression.

Highlights

  • Biotin is a water-soluble, B-complex vitamin that is required by all organisms [1]

  • The biotin protein ligase C terminus (BPL C) domain is thought to interact with ATP and the substrates [24]; it is conserved across holocarboxylase synthetase (HCS) proteins (Figure 2)

  • Steven Stanley et al first discovered that humans may have histones modified by biotin [16]

Read more

Summary

Introduction

The main role of biotin is to serve as a cofactor for carboxylases [2, 3]. Addition of biotin to carboxylases is catalyzed by holocarboxylase synthetase (HCS) in a two-step ATP-dependent reaction [4]. Five biotin-dependent proteins have been characterized in plants [3]. The other four are all carboxylases: homomeric acetyl-CoA carboxylase, heteromeric acetyl-CoA carboxylase, geranoyl-CoA carboxylase, and methylcrotonyl-CoA carboxylase [8,9,10,11]. These enzymes are involved in many important metabolic pathways, such as gluconeogenesis, fatty acid synthesis, and amino acid catabolism [3] (Figure 1)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call