Abstract

The ablation of atherosclerotic lesions without collateral thermal or shock wave damage is thought to be a key element for successful laser angioplasty. This study evaluated the effectiveness of pulsed holmium:YAG laser (2.1 microns wavelength) for this application. Fresh normal tissue (n = 139) and arteriosclerotic canine arteries (n = 21) as well as formalin-preserved normal canine (n = 31) and atherosclerotic human arteries (n = 177) were irradiated under saline via a 600 microns diameter fiber placed perpendicular to the intimal surface with 0-10 gm of force. The laser was operated in the free running mode (FRM; 250 microseconds pulsewidth, 5 Hz, 30-7,100 mJ/mm2) and in the Q-switched mode (QSM; 200 nsec pulsewidth, 6 Hz, 30-1,100 mJ/mm2). Following the experiments, the samples were prepared for histologic and morphometric analysis. Ablation thresholds in the FRM were 60 and 180 mJ/mm2 in fresh and preserved canine tissue, respectively. Ablation thresholds in the QSM for fresh and preserved canine tissues were 75 and 180 mJ/mm2, respectively. Thresholds for human atherosclerotic tissue were dependent on the amount of calcification. In the QSM and FRM, there were no samples that could not be penetrated at 1,100 mJ/mm2 and above. Histologic examination of the FRM samples revealed confined columns of tissue ablation, with approximately 55-250 microns and 70-140 microns zones of thermal effect being apparent in the fresh and formalin-preserved samples, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.