Abstract
Guided ion beam tandem mass spectrometry (GIBMS) and quantum chemical calculations are employed to evaluate the title chemi-ionization reaction with holmium. Exchange reactions of Ho+ with O2, CO, and SO2 and HoO+ with CO, as well as collision-induced dissociation (CID) reactions of HoO+ with Xe, O2, and CO, were performed using GIBMS. Formation of HoO+ is exothermic in reactions with O2 and SO2 but endothermic for reaction with CO, as is the exchange reaction of HoO+ with CO. Quantitative analysis of these reactions and the three CID reactions provides a robust method to determine the bond dissociation energy (BDE) of Ho+-O, 6.02 ± 0.13eV. BDEs for Ho+-C and OHo+-O are also measured as 2.27 ± 0.19 and 2.70 ± 0.27eV, respectively. All three measurements are the first direct determinations of these BDEs. By combining the BDE of HoO+ with the well-established ionization energy of Ho, the exothermicity of Ho in the title chemi-ionization reaction can also be obtained as 0.00 ± 0.13eV. All experimental thermochemistry was then compared to quantum chemical calculations for the purpose of establishing benchmarks and validation. BDEs determined via these calculations are in agreement with the experiment within the inherent experimental and theoretical uncertainties, with results obtained at the coupled-cluster with single, double, and perturbative triple excitations, CCSD(T), using all-electron basis sets yielding the most accurate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.