Abstract

The efficient chemical conversion of carbon dioxide (CO2 ) into value-added fine chemicals is an intriguing but challenging route in sustainable chemistry. Herein, a hollow-structured bimetallic zeolitic imidazole framework composed of Zn and Co as metal centers (H-ZnCo-ZIF) has been successfully prepared via a post-synthetic strategy based on controllable chemical-etching of the preformed solid ZnCo-ZIF in tannic acid. The creation of hollow cavities inside each monocrystalline ZIFs could be achieved without destroying the intrinsic frameworks, as characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction technologies. The as-synthesized H-ZnCo-ZIF exhibited remarkable catalytic activity in the cycloaddition of CO2 with epoxides to the corresponding cyclic carbonates, outperforming the solid ZnCo-ZIF analogue due to the improved mass transfer originating from the hollow structure. More importantly, due to stabilization of metal centers in the ZIF framework by the tannic acid shell, H-ZnCo-ZIF exhibited good recyclability, and no activity loss could be observed in six runs. The present study provides a simple and effective strategy to enhance the catalytic performance of ZIFs by creating a hollow structure via chemical etching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.