Abstract
The rational design of metal-organic frameworks (MOFs) with hollow features and tunable porosity at the nanoscale can enhance their intrinsic properties and stimulates increasing attentions. In this Communication, we demonstrate that methanol can affect the coordination mode of ZIF-67 in the presence of Co(2+) and induces a mild phase transformation under solvothermal conditions. By applying this transformation process to the ZIF-67@ZIF-8 core-shell structures, a well-defined hollow Zn/Co ZIF rhombic dodecahedron can be obtained. The manufacturing of hollow MOFs enables us to prepare a noble metal@MOF yolk-shell composite with controlled spatial distribution and morphology. The enhanced gas storage and porous confinement that originate from the hollow interior and coating of ZIF-8 confers this unique catalyst with superior activity and selectivity toward the semi-hydrogenation of acetylene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.