Abstract

Using hollow waveguide hybrid optical integration, a miniaturized mid-infrared laser absorption spectrometer for 13CO2/12CO2 isotopologue ratio analysis is presented. The laser analyzer described focuses on applications where samples contain a few percent of CO2, such as breath analysis and characterization of geo-carbon fluxes, where miniaturization facilitates deployment. As part of the spectrometer design, hollow waveguide mode coupling and propagation is analyzed to inform the arrangement of the integrated optical system. The encapsulated optical system of the spectrometer occupies a volume of 158 × 60 × 30 mm3 and requires a low sample volume (56 µL) for analysis, while integrating a quantum cascade laser, coupling lens, hollow waveguide cell and optical detector into a single copper alloy substrate. The isotopic analyzer performance is characterized through robust error propagation analysis, from spectral inversion to calibration errors. The analyzer achieves a precision of 0.2‰ in 500 s integration. A stability time greater than 500 s was established to allow two-point calibration. The accuracy achieved is 1.5‰, including a contribution of 0.7‰ from calibrant gases that can be addressed with improved calibration mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.