Abstract

AbstractElectrochemistry is an effective way to obtain clean energy and alleviate energy crisis. Compared with solid structures, hollow structures show a larger specific surface area and expose more active sites. Therefore, when applied to the field of electrochemistry, hollow structures can usually show more excellent performance. Because of their unique compositions, Prussian blue and its analogs (PB/PBAs) usually contain two or more kinds of metallic elements, and the synergistic effect between the different metallic elements provides more possibilities for their application in the field of electrochemistry. After easy treatment of PB/PBAs, derived materials, such as transition‐metal oxide, transition‐metal phosphide, transition‐metal sulfide, and so forth can be obtained. Due to the particularity of PBA composition, these derived materials are usually bimetallic or polymetallic. These derivatives not only inherit the structural advantages of PB/PBAs, but also usually solve the problem of poor conductivity of PB/PBAs. Therefore, derived materials can show more excellent electrochemical performance. In recent years, the preparation and electrochemical application of hollow PB/PBAs and their derivatives have attracted more and more attentions. In this article, the synthesis strategies of hollow PB/PBAs and their derived materials are systematically summarized. The applications of related materials in the field of electrochemistry are introduced in detail. And the prospects and challenges are further analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call