Abstract
AbstractConsiderable attention has been given in recent years towards the development of electromagnetic interference (EMI) shielding materials. In spite of the fact that leading polymer composites containing different magnetic and dielectric nanofillers have been used broadly, nevertheless, the impact of inorganic semiconducting nanomaterials has not been utilized fully. Herein, we have designed hollow ZnS nanospheres doped reduced graphene oxide sheets (rGO) via template‐free, one‐pot hydrothermal synthesis process and fabricated nanocomposites with poly(vinylidene fluoride), PVDF as matrix. Three dimensional conducting network of rGO sheets along with high interacting surface area with heterogeneous dielectrics led to a very high total shielding effectiveness (−40 dB) with 93% absorption. The underlying mechanism, supported by skin‐depth estimation and attenuation constant, is discussed in detail. This study opens new avenues in the field of EMI shielding materials as inorganic semiconductors show promising results in contrast to traditional materials involving conducting, dielectric and magnetic nanoparticles embedded polymer nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.