Abstract

AbstractMn‐based oxides are broadly prospected cathode materials for aqueous Zn‐ion batteries (AZIBs) due to their rich abundance, low cost, and plentiful valence states. However, the further development of Mn‐based oxides is severely restricted by the dissolution of active materials and poor structural stability. Herein, hollow octahedral Pr6O11‐Mn2O3 (denoted as PrO‐MnO) heterostructures are developed through a facile metal–organic framework‐engaged templating approach, which realizes boosted Zn ion storage performance. Pr6O11 can not only effectively suppress the dissolution of Mn to stabilize Mn2O3 but also induce interfacial charge rearrangement and promote electron/ion transfer, contributing to the improved electrochemical activity and stability of PrO‐MnO. Moreover, the rationally designed hollow nanostructure offers sufficient active sites and facilitates the reaction kinetics. As expected, the PrO‐MnO cathode exhibits excellent rate and cycling performance with a high reversible capacity of 140.8 mAh g−1 after 2000 cycles at 1 A g−1, outperforming the Mn2O3 cathode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.