Abstract

In this work, bimetallic NiPd hollow nanoporous (HNiPd) catalysts are prepared by in-situ deposition of Pd nanoparticles (Pd NPs) on hollow Ni (HNi) microspheres. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) reveal the hollow nanoporous essence of HNiPd catalysts. Meanwhile, using high-angle annular dark-field scanning TEM (HAADF-STEM) and elemental mapping, it is found that tiny dendritic-like NiPd nanocomposites attach on the exterior of microspheres. The content of Pd is easily tailored to constitute HNiPd catalysts with different Ni/Pd atomic ratios. Further electrochemical evaluation vindicates that the as-prepared HNiPd catalysts have a good catalytic activity and stability toward ethanol oxidation reaction (EOR) in alkaline medium. Notably, the peak current density of HNi3.1Pd catalyst and the chronoamperometric current density of HNi4.6Pd catalyst are 4 and 2 times of Pd/C (JM) catalyst, respectively, which show that HNiPd catalysts hold great potential in application of alkaline direct ethanol fuel cells (DEFCs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.