Abstract

AbstractHerein, we present heterogeneous hollow multi‐shelled structures (HoMSs) prepared by exploiting the properties of the metal–organic framework (MOFs) casing. Through accurately controlling the transformation of MOF layer into different heterogeneous casings, we can precisely design HoMSs of SnO2@Fe2O3(MOF) and SnO2@FeOx‐C(MOF), which not only retain properties of the original SnO2‐HoMSs, but also structural information from the MOFs. Tested as anode materials in LIBs, SnO2@Fe2O3 (MOF)‐HoMSs demonstrate superior lithium‐storage capacity and cycling stability to the original SnO2‐HoMSs, which can be attributed to the topological features from the MOF casing. Making a sharp contrast to the electrodes of SnO2@Fe2O3 (particle)‐HoMSs fabricated by hydrothermal method, the capacity retention after 100 cycles for the SnO2@Fe2O3 (MOF)‐HoMSs is about eight times higher than that of the SnO2@Fe2O3 (particle)‐HoMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call