Abstract

Hollow multimetallic noble nanoalloys with high surface area/volume ratio, abundant active sites, and relatively effective catalytic activity have attracted considerable research interest. Traditional noble nanoalloys fabricated by hydro-/solvothermal methods usually involve harsh synthetic conditions such as high temperatures and intricate processing. We proposed a simple and mild strategy to synthesize platinum- and palladium-decorated hollow gold-based nanoalloys by the galvanic replacement reaction (GRR) at room temperature using hollow gold nanoparticles as templates and mercury as an intermediate. The hollow gold nanoparticles were essential for increasing the number of surface-active sites of the obtained multimetallic nanoalloys, and the introduction of mercury can eliminate the influence of the electrochemical potential of Pt/Pd with Au in the GRRs, increase alloying degrees, and maintain the nanoalloys that exhibit the hollow nanostructures. The structural characterizations of the hollow nanoalloys were studied by means of high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. On the basis of the electrochemical catalytic measurements, the platinum-exposed nanoalloys were found to have excellent electrocatalytic activities. Especially in the presence of palladium, owing to the synergistic effect, the quaternary AuHgPdPt hollow nanoalloy displayed a low overpotential of 38 mV at 10 mA cm-2 with a small Tafel slope of 56.23 mV dec-1 for the alkaline hydrogen evolution reaction. In addition, this approach not only expands the application range of the galvanic replacement reaction but also provides new ideas for the preparation of multialloys and even high-entropy alloys at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call