Abstract
With the increasing demand for low-sugar, low-calorie healthy diets, artificial sweeteners are widely used as substitutes for sugar in the food industry. Therefore, developing models that can better predict the effects of sugar substitutes on the human body is necessary. Here, a new type of endocrine pancreas-on-a-chip is developed based on a microfiber assembly and its stimulation of pancreatic secretion by glucose or sugar substitutes is evaluated. This new endocrine pancreas-on-a-chip is assembled using two components: (1) a cell-loaded hollow methacrylate gelatin (GelMA)/calcium alginate (CaA) composite microfiber prepared by microfluidic spinning to achieve vascular simulation and material transport, and (2) a 3D pancreatic islet culture layer, which also serves as a fiber assembly microchip. Using this established organ chip, the effects of five sweeteners (glucose, erythritol, xylitol, sodium cyclamate, and sucralose) were investigated on pancreatic islet cell viability and insulin and glucagon secretion. The constructed endocrine pancreas-on-a-chip has potential for the safety evaluation of sugar-substituted food additives, which can expand the application of organ chips in the field of food safety and provide a new platform for evaluating various food additives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.